We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What Is a Turbofan?

By Ray Hawk
Updated Jan 29, 2024
Our promise to you
WikiMotors is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At WikiMotors, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

A turbofan is a type of air compression system used in most aircraft jet engines as of 2011, as well as in some high-performance cars, boats, or specialized air-powered vehicles such as hovercraft or turbofan-assisted helicopters. It is considered an improvement over turbojet or turboprop engines at normal commercial aircraft speeds due to increased fuel efficiency and noise reduction, and the turbofan gas turbine engine is also incorporated into many sub-sonic military aircraft. The earliest turbofan airbreathing jet engine was made in 1943, but problems with the efficiency and reliability of early designs as compared to that of turbojets delayed their widespread adoption until the 1960s.

A basic design for a turbofan engine has a front-mounted turbine that pulls in air and channels it in two directions. A small portion of the air is channeled to a central combustion chamber, where it is heated by burning fuel and exhausted out a jet nozzle at the rear for thrust. The remaining air is channeled around the combustion chamber to mix with exhaust gasses from the combustion process, as an exhaust turbine channels it out of the chamber. This increases the engine's thrust capability, reduces noise levels, and cools the combustion chamber simultaneously. Such engines are known as bypass turbofans, where the ratio of bypassed air channeled around the engine compared to the air that is used for combustion is in the range of 8 to 1, or higher.

The invention of the turbofan engine was a significant improvement over piston-driven engines as the direction of motion in the engine was in one rotary direction, reducing aircraft vibration overall. While a simple turbofan engine's parts all rotate at the same velocity, more advanced engines as of 2008 have a gearbox control system to increase their fuel efficiency level by 12% or more, as well as reduce noise and waste gas emissions by up to 50%. These gearbox turbofans attempt to match the velocity of bypassed air to the velocity of the aircraft itself, where earlier designs used the increased velocity of bypassed air to power the exhaust turbine for additional thrust. By controlling each part of the compression and exhaust process individually, the efficiency level of the engine can be adjusted for aircraft speed and attitude, increasing overall efficiency.

Military aircraft that can fly above supersonic speeds of MACH 1.6 or higher and have a need for high-performance characteristics use hybrid versions of the turbofan. At supersonic speeds, jet engines with simpler designs, such as the turbojet or ramjet engines, have a much higher thrust-to-weight ratio than the turbofan, but they perform poorly at subsonic speeds. These aircraft engines have additional features, therefore, such as afterburners and vectored thrust. Afterburners inject additional fuel behind the turbines of the engine itself and ignite it, giving the aircraft a powerful boost in thrust for high-speed air maneuvers. Vectored thrust is also used to control the attitude of the aircraft by the addition of movable jet exhaust nozzles on the turbofan engine, where the exit angle of the exhaust gasses can be changed. This can aid in sharp mid-air turns, vertical takeoff such as with the Harrier jet, or create reverse thrust to rapidly bring an aircraft to a stop on a short runway.

WikiMotors is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Discussion Comments

By Terrificli — On Dec 21, 2014

@Soulfox -- While a bird strike can be devastating, how often do they happen? Don't bother researching the answer because those bird strikes are incredibly rare.

Rarer still is the time a bird strike would bring down a whole plane. Think of a commercial airliner with four or six engines. If one of them is destroyed by a bird strike, the plane can still stay in the air.

In fact, you are probably more likely to get in a car wreck on the way to the airport than in a plane that is brought down by a bird strike. Relax and enjoy your flight, then.

By Soulfox — On Dec 20, 2014

The funny thing is that in spite of technological increases over the years, the simplest thing can bring a plane powered with turbofan engines right out of the sky. Yes, I am talking about the feared bird strike in which a goose or something gets lodged in an engine and destroys it.

That can bring a plane down in a hurry. Odd how the most complex machines can still fall victim to something as basic as a bird, isn't it?

WikiMotors, in your inbox

Our latest articles, guides, and more, delivered daily.

WikiMotors, in your inbox

Our latest articles, guides, and more, delivered daily.